如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(1)求椭圆C的

如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(1)求椭圆C的

题型:不详难度:来源:
如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
答案
(1)=1(2)3x+2y+2-2=0.
解析
(1)设椭圆左焦点为F(-c,0),则由题意得
所以椭圆方程为=1.
(2)设A(x1,y1),B(x2,y2),线段AB的中点为M.当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去.故可设直线AB的方程为y=kx+m(m≠0),由消去y,整理得(3+4k2)x2+8kmx+4m2-12=0,①
则Δ=64k2m2-4(3+4k2)(4m2-12)>0,
所以线段AB的中点为M.
因为M在直线OP:y=x上,所以,得m=0(舍去)或k=-.
此时方程①为3x2-3mx+m2-3=0,则Δ=3(12-m2)>0,,所以AB=·|x1-x2|=·,设点P到直线AB的距离为d,则d=
.设△ABP的面积为S,则S=AB·d=.其中m∈(-2,0)∪(0,2).令u(m)=(12-m2)(m-4)2,m∈[-2,2],u′(m)=-4(m-4)(m2-2m-6)=-4(m-4)·(m-1-)(m-1+).所以当且仅当m=1-时,u(m)取到最大值.故当且仅当m=1-时,S取到最大值.综上,所求直线l的方程为3x+2y+2-2=0
举一反三
如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.

(1)求证:A、C、T三点共线;
(2)如果=3,四边形APCB的面积最大值为,求此时椭圆的方程和P点坐标.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的右焦点为F(4m,0)(m>0,m为常数),离心率等于0.8,过焦点F、倾斜角为θ的直线l交椭圆C于M、N两点.

(1)求椭圆C的标准方程;
(2)若θ=90°,,求实数m;
(3)试问的值是否与θ的大小无关,并证明你的结论.
题型:不详难度:| 查看答案
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
题型:不详难度:| 查看答案
如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.