设是椭圆的左焦点,直线方程为,直线与轴交于点,、分别为椭圆的左右顶点,已知,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点且斜率为的直线交椭圆于、两点,求三角形面积.

设是椭圆的左焦点,直线方程为,直线与轴交于点,、分别为椭圆的左右顶点,已知,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)过点且斜率为的直线交椭圆于、两点,求三角形面积.

题型:不详难度:来源:
是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.
答案
(Ⅰ);(Ⅱ)三角形面积为
解析

试题分析:(Ⅰ)∵,∴,又∵
,∴
∴椭圆的标准方程为                 6分
(Ⅱ)由题知:
  消得:,             9分

到直线的距离:,                          12分
,即三角形面积为.        14分
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)在应用韦达定理的基础上,应用弦长公式,易于进一步计算三角形面积。
举一反三
设椭圆的四个顶点A、B、C、D, 若菱形ABCD的内切圆恰好经过椭圆的焦点, 则椭圆的离心率为         __  
题型:不详难度:| 查看答案
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,且过双曲线的顶点.
(1)求椭圆的标准方程;
(2)命题:“设是双曲线上关于它的中心对称的任意两点, 为该双曲线上的动点,若直线均存在斜率,则它们的斜率之积为定值”.试类比上述命题,写出一个关于椭圆的类似的正确命题,并加以证明和求出此定值;
(3)试推广(Ⅱ)中的命题,写出关于方程不同时为负数)的曲线的统一的一般性命题(不必证明).
题型:不详难度:| 查看答案
已知椭圆的两个焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,设点是椭圆上任一点,求的取值范围.
题型:不详难度:| 查看答案
已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线轴交于点,当为何值时的面积有最小值?并求出最小值.
题型:不详难度:| 查看答案
椭圆的左、右焦点分别为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆的离心率的取值范围是(  )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.