已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点。(1)求椭圆的方程;(2)若坐标原点到直线的距离为,求面积的最大值。

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点。(1)求椭圆的方程;(2)若坐标原点到直线的距离为,求面积的最大值。

题型:不详难度:来源:
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。
答案
(1)(2)
解析

试题分析:(1)由,椭圆的方程为:
(2)由已知,联立,消去,整理可得:
,则

,当且仅当时取等号
显然时,
点评:椭圆的概念和性质,仍将是今后命题的热点,定值、最值、范围问题将有所加强;利用直线、弦长、圆锥曲线三者的关系组成的各类试题是解析几何中长盛不衰的主题,其中求解与相交弦有关的综合题仍是今后命题的重点;与其它知识的交汇(如向量、不等式)命题将是今后高考命题的一个新的重点、热点.
举一反三
设椭圆的左、右焦点分别为
上顶点为,在轴负半轴上有一点,满足,且

(Ⅰ)求椭圆的离心率;
(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.
题型:不详难度:| 查看答案
中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点的动直线相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率满足

(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
椭圆的左焦点为F,右顶点为A,以FA为直径的圆经过椭圆的上顶点,则椭圆的离心率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆的离心率,其中一个顶点坐标为,则椭圆的方程为                      .
题型:不详难度:| 查看答案
F1F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则的最大值为__________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.