已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l:x=ky+m与椭圆M交手A,

已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l:x=ky+m与椭圆M交手A,

题型:不详难度:来源:
已知椭圆M:(a>b>0)的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求△ABC面积的最大值.
答案
(Ⅰ)(Ⅱ)时,取得最大值为.
解析
(1)由题意可知2a+2c和e的值,所以可以求出a,b,c进而确定椭圆方程.
(2)以AB为直径的圆过右顶点C,实质是,然后用坐标表示出来,再通过直线l的方程与椭圆方程联立,借助韦达定理和判断式把△ABC面积表示成关于k的函数,然后利用函数的方法求最值.
(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周长为,∴, 又椭圆的离心率为,即,所以
.  ………… 3分∴,椭圆的方程为.……4分
(Ⅱ)由直线的方程.联立 消去,………… 5分     
,则有. ① ……… 6分
因为以为直径的圆过点,所以 .由 ,得 .…………… 7分
代入上式,得 .
将 ① 代入上式,解得 (舍). ……… 8分
所以,记直线轴交点为,则点坐标为
所以
,则.
所以当时,取得最大值为
举一反三
已知双曲线的焦点与椭圆的焦点重合,则此双曲线的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分14分)
已知椭圆的离心率为,点上两点,斜率为的直线与椭圆交于点在直线两侧).

(I)求四边形面积的最大值;
(II)设直线的斜率为,试判断是否为定值.若是,求出这个定值;若不是,说明理由.
题型:不详难度:| 查看答案
(本题满分12分)已知椭圆过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆的左、右顶点,直线轴交于点,点是椭圆上异于
的动点,直线分别交直线两点.证明:恒为定值.
题型:不详难度:| 查看答案
已知点P是椭圆上的动点,F1F2分别为其左、右焦点,O是坐标原点,则的取值范围是            
题型:不详难度:| 查看答案
已知椭圆的左、右焦点分别为F1和F2 ,以F1、F2为直径的圆经过点M(0,b).(1)求椭圆的方程;(2)设直线l与椭圆相交于A,B两点,且.求证:直线l在y轴上的截距为定值。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.