(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.(Ⅰ)求椭圆的标准方程;(Ⅱ

(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.(Ⅰ)求椭圆的标准方程;(Ⅱ

题型:不详难度:来源:
(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;
(Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.
答案

解:(Ⅰ)由题意可得圆的方程为
∵直线与圆相切,∴,即,       又,即,解得
所以椭圆方程为.        ------------3分
(Ⅱ)设,则,即, 则

为定值.             ------------6分
(Ⅲ)设,其中
由已知及点在椭圆上可得
整理得,其中.----8分
①当时,化简得
所以点的轨迹方程为,轨迹是两条平行于轴的线段;                   -------------9分
②当时,方程变形为,其中
时,点的轨迹为中心在原点、实轴在轴上的双曲线满足的部分;          -------------11分
时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;          -------------12分
时,点的轨迹为中心在原点、长轴在轴上的椭圆.
-------------13分
解析

举一反三
若点F1,F2为椭圆的焦点,P为椭圆上的点,当的面积为1时,的值是(   )
A.0B.1C.3D.6

题型:不详难度:| 查看答案
(本小题满分15分)已知椭圆,设该椭圆上的点到左焦点的最大距离为,到右顶点的最大距离为.
(Ⅰ) 若,求椭圆的方程;
(Ⅱ) 设该椭圆上的点到上顶点的最大距离为,求证:.
题型:不详难度:| 查看答案
(本小题满分15分)
已知椭圆 ()的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程; 
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点.
(i)求点的轨迹的方程;
(ii)若为点的轨迹的过点的两条相互垂直的弦,求四边形面积的最小值.
题型:不详难度:| 查看答案
已知点F是椭圆的右焦点,过原点的直线交椭圆于点A、P,PF垂直于x轴,直线AF交椭圆于点B,,则该椭圆的离心率=___▲___.
题型:不详难度:| 查看答案
(本小题满分14分)
已知椭圆的左,右两个顶点分别为.曲线是以两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点
(1)求曲线的方程;
(2)设两点的横坐标分别为,证明:
(3)设(其中为坐标原点)的面积分别为,且,求的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.