(本小题满分13分)已知椭圆经过点,离心率为,动点(Ⅰ)求椭圆的标准方程;(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;(Ⅲ)设F是椭圆的右焦点,过点F

(本小题满分13分)已知椭圆经过点,离心率为,动点(Ⅰ)求椭圆的标准方程;(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;(Ⅲ)设F是椭圆的右焦点,过点F

题型:不详难度:来源:
(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.
答案




解析

举一反三
(本小题满分12分)
已知椭圆C:的左、右焦点分别为F1 ,F2,若椭圆上总存在点P,使得点P在以F1,F2为直径的圆上.
(1) 求椭圆离心率的取值范围;
(2) 若AB是椭圆C的任意一条不垂直x轴的弦,M为弦的中点,且满足
(其中分别表示直线AB、OM的斜率,0为坐标原点),求满足题意的椭圆C的方程.
题型:不详难度:| 查看答案
椭圆的焦点为F1,F2,P为椭圆上一点,若,则(  )
A.2B.4C.6D.8

题型:不详难度:| 查看答案
椭圆的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率为(      )
A.     B.       C.     D.
题型:不详难度:| 查看答案
求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.
题型:不详难度:| 查看答案
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.
(1)求椭圆的标准方程.
(2)斜率为1的直线L与椭圆交于A、B两点,O为原点,当△AOB的面积为时,求直线L的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.