(本小题满分12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(Ⅰ)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离

(本小题满分12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(Ⅰ)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离

题型:不详难度:来源:
(本小题满分12分)
设椭圆的离心率,右焦点到直线的距离为坐标原点.
(Ⅰ)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.
答案
 O到直线AB的距离
,   
解析
(I)由
由右焦点到直线的距离为
得:      解得
所以椭圆C的方程为          …………4分
(II)设
直线AB的方程为
与椭圆联立消去y得



 

整理得   所以O到直线AB的距离
                …………8分
, 
当且仅当OA=OB时取“=”号。


即弦AB的长度的最小值是          …………13分
举一反三
已知正方形ABCD的四个顶点在椭圆上,AB∥轴,AD过左焦点F,则该椭圆的离心率为         
题型:不详难度:| 查看答案
(本小题满分12分)
已知椭圆的左、右两个焦点分别为F1、F2,离心率为,且抛物线与椭圆C1有公共焦点F2(1,0)。
(1)求椭圆和抛物线的方程;
(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D为轨迹方程。
题型:不详难度:| 查看答案
(本小题满分12分)如图所示,已知A、B、C是椭圆上三点,其中点A的坐标为,BC过椭圆的中心O,且
(Ⅰ)求点C的坐标及椭圆E的方程;
(Ⅱ)若椭圆E上存在两点P,Q,使得的平分线总垂直于z轴,试判断向量是否共线,并给出证明.

题型:不详难度:| 查看答案
已知椭圆的左焦点,右顶点A,上顶点B,且,则椭圆的离心率是
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)
在平面直角坐标系中有两定点,若动点M满足,设动点M的轨迹为C。
(1)求曲线C的方程;
(2)设直线交曲线C于A、B两点,交直线于点D,若,证明:D为AB的中点。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.