如图,已知直线的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线上的射影依次为点D,K,E.(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(2)对于

如图,已知直线的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线上的射影依次为点D,K,E.(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(2)对于

题型:不详难度:来源:
如图,已知直线的右焦点F,且交椭圆CAB两点,点AFB在直线上的射影依次为点DKE.
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)对于(1)中的椭圆C,若直线Ly轴于点M,且,当m变化时,求的值;
(3)连接AEBD,试探索当m变化时,直线AEBD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.
答案
(1)(2)(3)AEBD相交于定点
解析
(1)易知

………………2分
  (2)


…………………………………………4分
又由

同理

……………………………………6分
(3)
先探索,当m=0时,直线Lox轴,则ABED为矩形,由对称性知,AEBD相交FK中点N,且
猜想:当m变化时,AEBD相交于定点……………………8分
证明:设
m变化时首先AE过定点N



ANE三点共线
同理可得BND三点共线
AEBD相交于定点……………………12分
举一反三
已知点P与定点F的距离和它到定直线l:的距离之比是1 : 2.
(1)求点P的轨迹C方程;
(2)过点F的直线交曲线C于A, B两点, A, B在l上的射影分别为M, N.
求证AN与BM的公共点在x轴上.
题型:不详难度:| 查看答案
设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点,已知|a|+|b|=4.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P的轨迹与x轴负半轴交于点A,过点F(1,0)的直线交点P的轨迹于B、C两点,试推断△ABC的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知平面截圆柱体,截口是一条封闭曲线,且截面与底面所成的
角为30°,此曲线是          ,它的离心率为        .
题型:不详难度:| 查看答案
已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?若是,求出这个定值;若不是,说明理由.
题型:不详难度:| 查看答案
椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A
(1)求满足条件的椭圆方程;
(2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.