在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为12.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)

在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为12.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)

题型:延庆县一模难度:来源:
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为
1
2
.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(Ⅰ) 求椭圆C的方程;
(Ⅱ)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG、PH为邻边的平行四边形为菱形.如果存在,求出m的取值范围;如果不存在,请说明理由.
答案
(Ⅰ)设椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,离心率e=
c
a
=
1
2

△ABF2的周长为|AF1|+|AF2|+|AF1|+|AF2|=4a=8,
解得a=2,c=1,则b2=a2-c2=3,
所以椭圆的方程为
x2
4
+
y2
3
=1

(Ⅱ)直线l1的方程为y=kx+3(k>0),





x2
4
+
y2
3
=1
y=kx+3
,消去y并整理得(3+4k2)x2+24kx+24=0(*),
△=(24k)2-4×24×(3+4k2)>0,解得k>


6
2

设椭圆的弦GH的中点为N(x0,y0),
则“在x轴上是否存在点P(m,0),使得以PG、PH为邻边的平行四边形为菱形.”等价于“在x轴上是否存在点P(m,0),使得PN⊥l1”.
设G(x1,y1),H(x2,y2),由韦达定理得,x1+x2=-
24k
3+4k2

所以x0=
x1+x2
2
=-
12k
3+4k2
,∴y0=kx0+3═
9
3+4k2

N(-
12k
3+4k2
9
3+4k2
)
kPN=-
9
12k+m(3+4k2)

所以,-
9
12k+m(3+4k2)
•k=-1
,解得m=-
3k
3+4k2
(k>


6
2
)

m′(k)=
3(2k-


3
)(2k+


3
)
(3+4k2)2
3(


6
-


3
)(2k+


3
)
(3+4k2)2
>0

所以,函数m=-
3k
3+4k2
(k>


6
2
)
在定义域(


6
2
,+∞)
单调递增,m(


6
2
)=-


6
6

所以满足条件的点P(m,0)存在,m的取值范围为(-


6
6
,+∞)
举一反三
已知椭圆C:(a>b>0)的左焦点F,C与过原点的直线相交于A,B两点,连结AF,BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率为(   )
题型:辽宁难度:| 查看答案
题型:福建难度:| 查看答案
题型:不详难度:| 查看答案
A.B.C.D.
椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=


3
(x+c)
与椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于______.
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为


6

(I)求a,b;
(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.
椭圆短轴长是2,长轴长是短轴的2倍,则椭圆中心到其准线距离是(   )
题型:北京难度:| 查看答案
题型:北京难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.B.C.D.
已知A,B,C是椭圆W:
x2
4
+y2=1
上的三个点,O是坐标原点.
(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.