方程(x-4)2+y2-(x+4)2+y2=6化简的结果是(  )A.x29-y27=1B.x225-y29=1C.x29-y27=1,x≤-3D.x29-y2

方程(x-4)2+y2-(x+4)2+y2=6化简的结果是(  )A.x29-y27=1B.x225-y29=1C.x29-y27=1,x≤-3D.x29-y2

题型:普陀区一模难度:来源:
方程


(x-4)2+y2
-


(x+4)2+y2
=6
化简的结果是(  )
A.
x2
9
-
y2
7
=1
B.
x2
25
-
y2
9
=1
C.
x2
9
-
y2
7
=1
,x≤-3
D.
x2
9
-
y2
7
=1
,x≥3
答案
方程的几何意义是动点P(x,y)到定点(4,0),(-4,0)的距离之差为6,由于6<8,所以动点的轨迹是以(4,0),(-4,0)为焦点,长轴长为6的双曲线的左支,故方程为
x2
9
-
y2
7
=1
,x≤-3
故选C
举一反三
双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为______.
题型:资阳二模难度:| 查看答案
平面上一动点到两定点距离差为常数2a(a>0)的轨迹是否是双曲线,若a>c 是否为双曲线?
题型:不详难度:| 查看答案
如果方程
x2
m+2
+
y2
m+1
=1
表示双曲线,则m的取值范围是(  )
A.(2,+∞)B.(-2,-1)C.(-∞,-1)D.(1,2)
题型:不详难度:| 查看答案
已知平面内两定点F1(0,-


5
)、F2(0,


5
)
,动点P满足条件:|


PF1
|-|


PF2
|=4
,设点P的轨迹是曲线E,O为坐标原点.
(I)求曲线E的方程;
(II)若直线y=k(x+1)与曲线E相交于两不同点Q、R,求


OQ


OR
的取值范围;
(III)(文科做)设A、B两点分别在直线y=±2x上,若


AP


PB
(λ∈[
1
2
,3])
,记xA、xB分别为A、B两点的横坐标,求|xA•xB|的最小值.
(理科做)设A、B两点分别在直线y=±2x上,若


AP


PB
(λ∈[
1
2
,3])
,求△AOB面积的最大值.
题型:不详难度:| 查看答案
已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2


2
.记动点P的轨迹为W.若A,B是W上的不同两点,O是坐标原点.
(1)求W的方程;
(2)若AB的斜率为2,求证


OA


OB
为定值.
(3)求


OA


OB
的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.