设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线,(Ⅰ)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(

设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线,(Ⅰ)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(

题型:期末题难度:来源:
设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线,
(Ⅰ)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;
(Ⅱ)当x1=1,x2=﹣3时,求直线l的方程.
答案
解:(Ⅰ)∵抛物线y=2x2,即 
 , ∴焦点为 
(1)直线l的斜率不存在时,显然有x1+x2=0
(2)直线l的斜率存在时,设为k,截距为b 即直线l:y=kx+b
由已知得:   
即l的斜率存在时,不可能经过焦点
所以当且仅当x1+x2=0时,直线l经过抛物线的焦点F
(Ⅱ)当x1=1,x2=﹣3时,直线l的斜率显然存在,设为l:y=kx+b
则由(Ⅰ)得:  
所以直线l的方程为 ,即x﹣4y+41=0
举一反三
已知动圆过定点P(1,0),且与定直线l:x=﹣1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为﹣的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.
题型:期末题难度:| 查看答案
已知点P是抛物线y2=﹣8x上一点,设P到此抛物线准线的距离是d1,到直线x+y﹣10=0的距离是d2,则dl+d2的最小值是[     ]
A.
B.2
C.6
D.3
题型:期末题难度:| 查看答案
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值。
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D,证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值。
题型:高考真题难度:| 查看答案

已知曲线C上的动点P到点F(2,0)的距离比它到直线x=﹣1的距离大1.
(I)求曲线C的方程;
(II)过点F(2,0)且倾斜角为的直线与曲线C交于A,B两点,线段AB的垂直平分线m交x轴于点P,证明:|FP|﹣|FP|·cos2α为定值,并求出此定值


题型:山东省月考题难度:| 查看答案
已知抛物线C的方程为x2=y,过点A(0,﹣1)和点B(t,3)的直线与抛物线C没有公共点,则实数t的取值范围是  [     ]
A.(﹣∞,﹣1)∪(1,+∞)
B.(﹣∞,﹣)∪(,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣)∪(,+∞)
题型:新疆维吾尔自治区期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.