已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.(1)如图所示,

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.(1)如图所示,

题型:不详难度:来源:
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A ,B两点.
(1)如图所示,若,求直线l的方程;
(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

答案
(1);(2)长轴长的最小值为.
解析

试题分析:(1)首先求得抛物线方程为 .
设直线方程为,并设
利用,得到 ;
联立,可得,应用韦达定理得到 ,
从而得到,求得直线方程.
(2)可求得对称点
代入抛物线中可得:,直线方程为,考虑到对称性不妨取,
椭圆设为联立直线、椭圆方程并消元整理可得
,可得 ,即得解.
(1)由题知抛物线方程为 。                 2分
设直线方程为,并设
因为,所以.
联立,可得,有            4分
解得:,所以直线方程为:  6分 
(2)可求得对称点,            8分
代入抛物线中可得:,直线方程为,考虑到对称性不妨取,
设椭圆方程为,联立直线方程和椭圆方程并消元整理得,       10分
因为椭圆与直线有交点,所以
即:,解得        12分

∴长轴长的最小值为..                        13分
举一反三
设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为________.
题型:不详难度:| 查看答案
已知抛物线C:的焦点为F,过点F倾斜角为60°的直线l与抛物线C在第一、四象限分别交于A、B两点,则的值等于(    )
(A)2          (B)3          (C)4        (D)5
题型:不详难度:| 查看答案
设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系中,抛物线上纵坐标为2的一点到焦点的距离为3,则抛物线的焦点坐标为     
题型:不详难度:| 查看答案
抛物线=-2y2的准线方程是                .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.