已知点A(2,1),抛物线y2=4x的焦点是F,若抛物线上存在一点P,使得|PA|+|PF|最小,则P点的坐标为(  )A.(2,1)B.(1,1)C.D.

已知点A(2,1),抛物线y2=4x的焦点是F,若抛物线上存在一点P,使得|PA|+|PF|最小,则P点的坐标为(  )A.(2,1)B.(1,1)C.D.

题型:不详难度:来源:
已知点A(2,1),抛物线y2=4x的焦点是F,若抛物线上存在一点P,使得|PA|+|PF|最小,则P点的坐标为(  )
A.(2,1)B.(1,1)C.D.

答案
D
解析
抛物线的焦点为F(1,0),准线方程为x=-1,过点P作准线的垂线交准线于B,则|PF|=|PB|,所以|PA|+|PF|=|PA|+|PB|,所以当A,P,B三点共线时,|PA|+|PF|最小,此时yP=yA=1,所以xP,即P点的坐标为.
举一反三
过抛物线y2=x的焦点F的直线m的倾斜角θ≥,m交抛物线于A,B两点,且A点在x轴上方,则|FA|的取值范围是________.
题型:不详难度:| 查看答案
已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N,则∠MON的大小为________.
题型:不详难度:| 查看答案
如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.

(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.
题型:不详难度:| 查看答案
如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.

(1)求证:MA⊥MB;
(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.
题型:不详难度:| 查看答案
已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.