若抛物线y2=ax上恒有关于直线x+y-1=0对称的两点A,B,则a的取值范围是(  )A.B.C.D.

若抛物线y2=ax上恒有关于直线x+y-1=0对称的两点A,B,则a的取值范围是(  )A.B.C.D.

题型:不详难度:来源:
若抛物线y2=ax上恒有关于直线x+y-1=0对称的两点A,B,则a的取值范围是(  )
A.
B.
C.
D.

答案
C
解析

试题分析:设A(),B(),
因为点A和B在抛物线上,所以有=a
=a
①-②得,=a().
整理得
因为A,B关于直线x+y-1=0对称,所以=1,即=1.
所以+=a.
设AB的中点为M(x0,y0),则y0=
又M在直线x+y-1=0上,所以x0=1−y0=1−
则M(1−).
因为M在抛物线内部,所以<0.
<0,解得0<a<.故选C.
点评:中档题,“点差法”是解决与弦中点有关问题的常用方法,解答的关键是由AB中点在抛物线内部得到关于a的不等式.
举一反三
是曲线上的一个动点,且点为线段的中点,则动点的轨迹方程为_____________。
题型:不详难度:| 查看答案
抛物线的焦点坐标是____________.
题型:不详难度:| 查看答案
如图所示,设抛物线的焦点为,且其准线与轴交于,以为焦点,离心率的椭圆与抛物线轴上方的一个交点为P.

(1)当时,求椭圆的方程;
(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知动圆圆心在抛物线上,且动圆恒与直线相切,则此动圆必过定点        
题型:不详难度:| 查看答案
(本小题满分13分)
已知抛物线经过点A(2,1),过A作倾斜角互补的两条不同直线.
(1) 求抛物线W的方程及准线方程;
(2) 当直线与抛物线W相切时,求直线的方程;
(3) 设直线分别交抛物线W于B、C两点(均不与4重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.