(12分)过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.(1)求证:FM1⊥FN1;(2)

(12分)过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.(1)求证:FM1⊥FN1;(2)

题型:不详难度:来源:
(12分)过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.
(1)求证:FM1⊥FN1;
(2)记△FMM1、△FM1N1、△FNN1的面积分别为,试判断S=4是否成立,并证明你的结论.
答案

(1)略
(2)略
解析
(1)证法一:由抛物线的定义得|MF|=|MM1|,|NF|=|NN1|.
∴∠MFM1=∠MM1F,∠NFN1=∠NN1F.
如图,设准线l与x轴的交点为F1.
∵MM1∥NN1∥FF1,
∴∠F1FM1=∠MM1F,∠F1FN1=∠NN1F.
而∠F1FM1+∠MFM1+∠F1FN1+∠NFN1=180o,
即2∠F1FM1+2∠F1FN1=180o,
∴∠F1FM1+∠F1FN1=90o,
即∠M1FN1=90o,故FM1⊥FN1.
证法二:依题意,焦点为F(,0),准线l的方程为x=-.
设点M,N的坐标分别为M(x1,y1),N(x2,y2),直线MN的方程为x=my+,则有M1(-,y1),N1(-,y2),=(-p,y1), =(-p,y2).

于是,y1+y2=2mp,y1y2=-p2.
·=p2+y1y2=p2-p2=0,故FM1⊥FN1.
(2)S=4S1S3成立,证明如下:
证法一:设M(x1,y1),N(x2,y2),
直线l与x轴的交点为F1,则由抛物线的定义得
|MM1|=|MF|=x1+, |NN1|=|NF|=x2+. 于是
S1=·|MM1|·|F1M1|=(x1+)|y1|,
S2=·|M1N1|·|FF1|=p|y1-y2|,
S3=·|NN1|·|F1N1|=(x2+)|y2|,
∵S=4S1S3(p|y1-y2|)2
=4×(x1+)|y1|·(x2+)·|y2|p2[(y1+y2)2-4y1y2]=[x1x2+(x1+x2)+]·|y1y2|.
代入上式化简可得
p2(m2p2+p2)=p2(m2p2+p2),此式恒成立. 故S=4S1S3成立.
举一反三
.已知直线与抛物线相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则实数k的值为   (   )
A.B.C.D.

题型:不详难度:| 查看答案
抛物线的焦点坐标是(  )
A.(0,B.(,0)C.(1,0)D.(0,1)

题型:不详难度:| 查看答案
已知抛物线上一点到其焦点的距离为,则m      .
题型:不详难度:| 查看答案
已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为( )
A.18B.24C. 36D. 48

题型:不详难度:| 查看答案
抛物线与圆相交于第一象限的P点,且在P点处两曲线的切线互相垂直,则            .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.