已知圆的圆心在坐标原点O,且恰好与直线相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.(

已知圆的圆心在坐标原点O,且恰好与直线相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.(

题型:不详难度:来源:
已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.
答案
(1);(2);(3).
解析

试题分析:(1)求圆的方程,已经已知圆心坐标,只要再求得圆的半径即可,而圆心的半径等于圆心到切线的距离;(2)本题动点可以看作是由动点的运动成生成的,因此可以用动点转移法求点的轨迹方程,具体方法就是设,利用条件,求出的关系,并且用来表示,然后把代入(1)中圆的方程,就能求得动点为的轨迹方程;(3)时,曲线的方程为,直线垂直,其方程可设为,这条直线与曲线相交,由此可求得的取值范围,而的面积应该表示为的函数,然后利用函数的知识或不等式的知识求得最值.
试题解析:(1)设圆的半径为,圆心到直线距离为,则
所以,圆的方程为
(2)设动点,,轴于,
由题意,,所以 即:
代入,得动点的轨迹方程.
(3)时,曲线方程为,设直线的方程为
设直线与椭圆交点
联立方程
因为,解得,且
又因为点到直线的距离 
 .(当且仅当
时取到最大值)面积的最大值为.
举一反三
设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)试判断圆轴的位置关系;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.
题型:不详难度:| 查看答案
已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-2+y2=相切于点Q,且=2,则椭圆C的离心率等于(  )
A.B.C.D.

题型:不详难度:| 查看答案
椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.