已知双曲线x2-=1. (1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.(2)设(1)中椭圆的左、右顶点分别为A、B,右焦点为F,直线l为椭

已知双曲线x2-=1. (1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.(2)设(1)中椭圆的左、右顶点分别为A、B,右焦点为F,直线l为椭

题型:不详难度:来源:
已知双曲线x2=1.
 
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.
答案
(1)=1(2)-(3)x2y2+2x-18y-8=0
解析
(1)∵双曲线焦点为(±2,0),设椭圆方程为=1(ab>0).
a2=16,b2=12.故椭圆方程为=1.
(2)由已知,A(-4,0),B(4,0),F(2,0),直线l的方程为x=8.
N(8,t)(t>0).∵AMMN,∴M.
由点M在椭圆上,得t=6.
故所求的点M的坐标为M(2,3).
所以=(-6,-3),=(2,-3),·=-12+9=-3.
cos∠AMB=-.
(3)设圆的方程为x2y2DxEyF=0,将AFN三点坐标代入,得

圆的方程为x2y2+2xy-8=0,令x=0,得y2y-8=0.
P(0,y1),Q(0,y2),则y1,2.
由线段PQ的中点为(0,9),得y1y2=18,t=18,
此时,所求圆的方程为x2y2+2x-18y-8=0
举一反三
在平面直角坐标系xOy中,过点A(-2,-1)椭圆C=1(ab>0)的左焦点为F,短轴端点为B1B2=2b2.
(1)求ab的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.
题型:不详难度:| 查看答案
在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于AB两点,其中点Ax轴下方,且=3.求过OAB三点的圆的方程.
题型:不详难度:| 查看答案
如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
题型:不详难度:| 查看答案
已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于PQ两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点MN,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,F1,F2是椭圆C1+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形, 则C2的离心率是________.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.