在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.(1)求椭圆C的方程;(2)过椭圆C的右焦点F作直线l与椭圆C分

在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.(1)求椭圆C的方程;(2)过椭圆C的右焦点F作直线l与椭圆C分

题型:不详难度:来源:
在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2,1)到两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于AB两点,其中点Ax轴下方,且=3.求过OAB三点的圆的方程.
答案
(1)=1(2)x2y2xy=0.
解析
(1)由题意,设椭圆C=1(ab>0),则2a=4a=2.
因为点(2,1)在椭圆=1上,所以=1,解得b.
所以所求椭圆的方程为=1.
(2)设A(x1y1),B(x2y2)(y1<0,y2>0).点F的坐标为F(3,0).
=3.,得
又点AB在椭圆C上,所以解得
所以B,代入①,得点A的坐标为(2,-).
因为·=0,所以OAAB.
所以过OAB三点的圆就是以OB为直径的圆.
其方程为x2y2xy=0.
举一反三
如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
题型:不详难度:| 查看答案
已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于PQ两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点MN,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,F1,F2是椭圆C1+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形, 则C2的离心率是________.

题型:不详难度:| 查看答案
如图,已知椭圆的离心率是分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点轴上位于右侧的一点,且满足

(1)求椭圆的方程以及点的坐标;
(2)过点轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.
题型:不详难度:| 查看答案
中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:
条件
方程
周长为10

面积为10

中,

则满足条件①、②、③的点轨迹方程按顺序分别是 
A.    B. 
C.     D. 
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.