已知曲线的极坐标方程为,曲线的极坐标方程为,曲线、相交于、两点.()(Ⅰ)求、两点的极坐标;(Ⅱ)曲线与直线(为参数)分别相交于两点,求线段的长度.

已知曲线的极坐标方程为,曲线的极坐标方程为,曲线、相交于、两点.()(Ⅰ)求、两点的极坐标;(Ⅱ)曲线与直线(为参数)分别相交于两点,求线段的长度.

题型:不详难度:来源:
已知曲线的极坐标方程为,曲线的极坐标方程为,曲线相交于两点.(
(Ⅰ)求两点的极坐标;
(Ⅱ)曲线与直线为参数)分别相交于两点,求线段的长度.
答案
(Ⅰ):;(Ⅱ).
解析

试题分析:(Ⅰ)由 得:即可得到 .进而得到点 的极坐标.
(Ⅱ)由曲线 的极坐标方程化为,即可得到普通方程.将直线代入,整理得 .进而得到.
试题解析:(Ⅰ)由得: ,即    3分
所以两点的极坐标为:        5分
(Ⅱ)由曲线的极坐标方程得其普通方程为        6分
将直线代入,整理得       8分
所以
举一反三
已知椭圆的左、右焦点分别为为原点.
(1)如图1,点为椭圆上的一点,的中点,且,求点轴的距离;

(2)如图2,直线与椭圆相交于两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.

题型:不详难度:| 查看答案
已知点,动点满足
(1)求动点的轨迹的方程;
(2)在直线上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中到直线的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.
题型:不详难度:| 查看答案
已知椭圆两焦点坐标分别为,,且经过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点,直线与椭圆交于两点.若△是以为直角顶点的等腰直角三角形,试求直线的方程.
题型:不详难度:| 查看答案
已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.