已知椭圆:的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆相交于,两点.点,记直线的斜率分别为,当最大时,求直线的方

已知椭圆:的左、右焦点和短轴的两个端点构成边长为2的正方形.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线与椭圆相交于,两点.点,记直线的斜率分别为,当最大时,求直线的方

题型:不详难度:来源:
已知椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相交于两点.点,记直线的斜率分别为,当最大时,求直线的方程.
答案
(Ⅰ)椭圆的方程为;(Ⅱ)直线的方程为
解析

试题分析:(Ⅰ)由已知,椭圆的左、右焦点和短轴的两个端点构成边长为2的正方形,所以,利用,可得,又椭圆的焦点在轴上,从而得椭圆的方程;(Ⅱ)需分直线的斜率是否为0讨论.①当直线的斜率为0时,则;②当直线的斜率不为0时,设,直线的方程为,将代入,整理得.利用韦达定理列出.结合,列出关于的函数,应用均值不等式求其最值,从而得的值,最后求出直线的方程.
试题解析:(Ⅰ)由已知得(2分),又,∴椭圆方程为(4分)
(Ⅱ)①当直线的斜率为0时,则;       6分
②当直线的斜率不为0时,设,直线的方程为
代入,整理得
.      8分

所以,=
 10分.
,则
所以当且仅当,即时,取等号. 由①②得,直线的方程为.13分.
举一反三
曲线在矩阵的变换作用下得到曲线
(Ⅰ)求矩阵
(Ⅱ)求矩阵的特征值及对应的一个特征向量.
题型:不详难度:| 查看答案
矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
题型:不详难度:| 查看答案
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知为两个不相等的非零实数,则方程所表示的曲线可能是(  )

题型:不详难度:| 查看答案
若直线和⊙O∶相离,则过点的直线与椭圆的交点个数为(    )
A.至多一个B. 2个C. 1个   D.0个

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.