连接MN,设MN的方程为y=kx+b,倾斜角为α 代入M,N的坐标,有 2k+b=1 -k+b=2 解得k=-,b= 即tanα==- MN的方程为y=-+,x∈[-1,2] 设MN的中点坐标为Q(a,-+) 有|QM|2=|QN|2 (a-2)2+(-+-1)2=[a-(-1)]2+(-+-2)2 解得a= 得Q(,) 与MN垂直的直线斜率为 tan(+α)= =-=3 设MN垂直平分线的方程为y=3x+c 代入Q(,),得 3×+c= 得c=0 MN垂直平分线的方程为y=3x 可知y=3x上的点到M的距离与到N的距离相等,则点P在y=3x上,同时又在A,B,C,D中的一个曲线上,即两个图象有交点 A.3x-y+1=0 即y=3x+1 3x+1=3x不成立,两个图象无交点 B.y=3x代入x2+y2-4x+3=0,得 10x2-4x+3=0 判别式△=(-4)2-4×10×3=-104<0 两个图象无交点 C.y=3x代入+y2=1,得 +(3x)2=1,解得x=± 3*(±2√19/19)═±6√19/19 得P(,)或(-,-) D.y=3x代入-y2=1,得 +1═0 判别式△=02-4×(17/2)×1=-34<0 两个图象无交点 只有C选项正确 故选C |