中心在原点,焦点在轴上的双曲线的离心率为,直线与双曲线交于两点,线段中点在第一象限,并且在抛物线上,且到抛物线焦点的距离为,则直线的斜率为(   )A.B.C.

中心在原点,焦点在轴上的双曲线的离心率为,直线与双曲线交于两点,线段中点在第一象限,并且在抛物线上,且到抛物线焦点的距离为,则直线的斜率为(   )A.B.C.

题型:不详难度:来源:
中心在原点,焦点在轴上的双曲线的离心率为,直线与双曲线交于两点,线段中点在第一象限,并且在抛物线上,且到抛物线焦点的距离为,则直线的斜率为(   )
A.B.C.D.

答案
D
解析

试题分析:∵到抛物线焦点的距离为,∴,∴M,设点,代入双曲线方程相减得,又双曲线的离心率为,∴,∴,∴,故选D
点评:熟练掌握双曲线中的“中点弦”问题是解决此类问题的关键,属基础题
举一反三
已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。
题型:不详难度:| 查看答案
过双曲线左焦点的直线与以右焦点为圆心、为半径的圆相切于A点,且,则双曲线的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
抛物线的焦点为,过焦点倾斜角为的直线交抛物线于两点,点在抛物线准线上的射影分别是,若四边形的面积为,则抛物线的方程为____
题型:不详难度:| 查看答案
椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.
题型:不详难度:| 查看答案
已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线的参数方程是:(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于两点,点的直角坐标为,若,求直线的普通方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.