如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )A.B.C.D.

如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )A.B.C.D.

题型:不详难度:来源:
如图所示,已知椭圆的方程为 ,A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆的离心率等于(   )
A.B.C.D.

答案
C
解析

试题分析:由图形知|BC|=a,且BC∥OA由椭圆的对称性知,B,C两点关于y轴对称,由此可以求出两点的坐标,再连接OC,有∠OAB=45°及平行的性质,椭圆的对称性,令椭圆的右端点为M,则有∠COM=∠CMO=∠OAB=45°由此可得CO垂直于MC,故有 
又四边形OABC为平行四边形,B,C在椭圆上,由图形知|BC|=a,且BC∥OA由椭圆的对称性知,B,C两点关于y轴对称,故C的横坐标为 ,代入椭圆方程中,则有,那么代入上式可知a2=3b2,故可得c2=2b2,所以椭圆的离心率等于,选C
点评:本题考查椭圆的简单性质,求解本题的关键是根据椭圆的对称性得出点C的坐标以及图形中的垂直关系,求出点C的坐标是为了表示出斜率,求出垂直关系是为了利用斜率的乘积为-1建立方程,然后再根据求离心率的公式求出离心率即可.本题比较抽象,方法单一,入手较难,运算量不大
举一反三
以椭圆的中心为顶点,右焦点为焦点的抛物线方程是     .
题型:不详难度:| 查看答案
已知曲线恰有三个点到直线距离为,则     .
题型:不详难度:| 查看答案
设椭圆和双曲线的公共焦点为是两曲线的一个交点,则=     .
题型:不详难度:| 查看答案
已知双曲线上任意一点;
(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点,求的最小值.
题型:不详难度:| 查看答案
如图所示,已知是椭圆 的左、右焦点,点在椭圆上,线段与圆相切于点,且点为线段的中点,则椭圆的离心率为     .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.