已知椭圆的方程是(),它的两个焦点分别为,且,弦AB(椭圆上任意两点的线段)过点,则的周长为      

已知椭圆的方程是(),它的两个焦点分别为,且,弦AB(椭圆上任意两点的线段)过点,则的周长为      

题型:不详难度:来源:
已知椭圆的方程是(),它的两个焦点分别为,且,弦AB(椭圆上任意两点的线段)过点,则的周长为      
答案

解析

试题分析:根据题意,由于椭圆的方程是(),它的两个焦点分别为,且,因此可知c=4,那么由于椭圆的焦点在x轴上,因此可知,而三角形的周长为即为4a,那么根据椭圆的定义得到为,故答案为
点评:解决的关键是利用椭圆的定义分析得到a的值,然后借助于定义法来得到结论,属于基础题。
举一反三
已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(  )
A.B.C.D.

题型:不详难度:| 查看答案
(本题满分14分)
如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是

(1)求的值;(2)求的值.
题型:不详难度:| 查看答案
抛物线的焦点坐标是
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分13分)
已知椭圆的右焦点为F,离心率,椭圆C上的点到F的距离的最大值为,直线l过点F与椭圆C交于不同的两点A、B.
(1) 求椭圆C的方程;
(2) 若,求直线l的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.