若关于的方程的三个根可分别作为一个椭圆、双曲线、抛物线的离心率,则的取值范围为         . 

若关于的方程的三个根可分别作为一个椭圆、双曲线、抛物线的离心率,则的取值范围为         . 

题型:不详难度:来源:
若关于的方程的三个根可分别作为一个椭圆、双曲线、抛物线的离心率,则的取值范围为         . 
答案

解析

试题分析:令f(x)=x3+ax2+bx+c
∵抛物线的离心率为1,∴1是方程f(x)=x3+ax2+bx+c=0的一个实根
∴a+b+c=-1
∴c=-1-a-b代入f(x)=x3+ax2+bx+c,
可得f(x)=x3+ax2+bx-1-a-b=(x-1)(x2+x+1)+a(x+1)(x-1)+b(x-1)=(x-1)[x2+(a+1)x+1+a+b]
设g(x)=x2+(a+1)x+1+a+b,则g(x)=0的两根满足0<x1<1,x2>1
∴g(0)=1+a+b>0,g(1)=3+2a+b<0
作出可行域,如图所示

的几何意义是区域内的点与原点连线的斜率,
∴-2≤<-故答案为:-2≤<-
点评:解题的关键是根据条件来写出不等式组,然后结合规划知识来得到。涉及到了函数的根的分布,多项式恒等等知识.属中档题。
举一反三
已知直线经过椭圆的焦点并且与椭圆相交于两点,线段的垂直平分线与轴相交于点,则面积的最大值为         
题型:不详难度:| 查看答案
(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.
题型:不详难度:| 查看答案
已知是椭圆的两个焦点,为椭圆上的一点,且,则的面积是(  )
A.7B.C.D.

题型:不详难度:| 查看答案
中 ,,以点为一个焦点作一个椭圆,使这个椭圆
的另一焦点在边上,且这个椭圆过两点,则这个椭圆的焦距长为     
题型:不详难度:| 查看答案
(本小题满分12分)
设双曲线的方程为为其左、右两个顶点,是双曲线 上的任意一点,作,垂足分别为交于点.
(1)求点的轨迹方程;
(2)设的离心率分别为,当时,求的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.