已知椭圆的焦距为2,点在椭圆上, 求椭圆的标准方程; 若过点的直线与中的椭圆交于不同的两点(在、之间);试求与面积之比的取值范围.

已知椭圆的焦距为2,点在椭圆上, 求椭圆的标准方程; 若过点的直线与中的椭圆交于不同的两点(在、之间);试求与面积之比的取值范围.

题型:不详难度:来源:
已知椭圆的焦距为2,点在椭圆上,
 求椭圆的标准方程;
 若过点的直线与中的椭圆交于不同的两点之间);
试求面积之比的取值范围.
答案


解析

举一反三
、中心在原点、焦点在x轴上的双曲线的实轴长与虚轴长相等,并且焦点到渐近线的距离为,则双曲线方程为___________。
题型:不详难度:| 查看答案
、已知点M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F。
(1)若圆M与y轴相切,求椭圆的离心率;
(2)若圆M与y轴相交于A、B两点,且△ABM是边长为2的正三角形,求椭圆的方程。
题型:不详难度:| 查看答案
如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

题型:不详难度:| 查看答案
已知双曲线2x2-2y2=1的两个焦点为F1,F2,P为动点,若|PF1|+|PF2|=4.
(1)求动点P的轨迹E的方程;
(2)求cos∠F1PF2的最小值.
题型:不详难度:| 查看答案
.(本小题满分16分)
平面直角坐标系xOy中,已知圆M经过F1(0,-c),F2(0,c),A(c,0)三点,其中c>0
(1)求圆M的标准方程(用含c的式子表示);
(2)已知椭圆(其中)的左、右顶点分别为D、B,圆 M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧。
求椭圆离心率的取值范围;
若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.