(本题满分12分)设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:x3—24y0—4- (1)求的标准方程

(本题满分12分)设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:x3—24y0—4- (1)求的标准方程

题型:不详难度:来源:
(本题满分12分)
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的标准方程;
(2)设直线与椭圆交于不同两点,请问是否存在这样的
直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.
答案
(1)方程为
(2)存在这样的直线过抛物线焦点的方程为:
解析
解:(1)设抛物线,则有,据此验证5个点知只有(3,)、(4,-4)在统一抛物线上,易求                                2分
,把点(-2,0)()代入得
解得
方程为                                                  5分
(2)假设存在这样的直线过抛物线焦点(1,0)
设其方程为
。得                                    7分
消去,得
    ①

 ②     9分
将①②代入(*)式,得

解得    11分
假设成立,即存在直线过抛物线焦点F
的方程为:     12分
举一反三
已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,且轴,若为双曲线的一条斜率大于0的渐近线,则的斜率可以在下列给出的某个区间内,该区间可以是(   )
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分13分)
已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是
(I)证明为常数;
(II)若动点满足(其中为坐标原点),求点的轨迹方程.
题型:不详难度:| 查看答案
(本小题满分12分)
设动点P到点A(-l,0)和B(1,0)的距离分别为d1d2
APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于MN
点,试确定λ的范围,使·=0,其中点
O为坐标原点.

题型:不详难度:| 查看答案
(本小题满分12分)如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以tt >0)为半径的圆分别与曲线Gy轴的正半轴相交于点A与点B.直线ABx轴相交于点C.

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;
(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.
题型:不详难度:| 查看答案
.以=1的焦点为顶点,顶点为焦点的椭圆方程为       (  )
A.    B.   C.      D.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.