条件:(1)截轴弦长为2.(2)被轴分成两段圆弧,其弧长之比为3:1在满足(1)(2)的所有圆中,求圆心到直线距离最小时圆的方程.

条件:(1)截轴弦长为2.(2)被轴分成两段圆弧,其弧长之比为3:1在满足(1)(2)的所有圆中,求圆心到直线距离最小时圆的方程.

题型:不详难度:来源:
条件:(1)截轴弦长为2.(2)被轴分成两段圆弧,其弧长之比为3:1在满足(1)(2)的所有圆中,求圆心到直线距离最小时圆的方程.
答案
设所求圆的方程为:,则由截轴的弦长为2得
由被轴分成两段圆弦,其弧长之比为,∴
圆心到直线的距离

,      此时
所以,所求圆的方程为
解析
本题考查了用待定系数法求圆的方程,其中条件(1)和(2)的转化要注意利用圆的几何性质,只有这样才能既直观又准确地写出其代数关系式.
举一反三
(本题满分15分)如图△ABC为直角三角形,点M在y轴上,且,点C在x轴上移动,(I)求点B的轨迹E的方程;(II)过点的直线l与曲线E交于P、Q两点,
的夹角为
的取值范围;  (III)设以点N(0,m)为圆心,以
半径的圆与曲线E在第一象限的交点H,若圆在点H处的
切线与曲线E在点H处的切线互相垂直,求实数m的值。
题型:不详难度:| 查看答案
曲线与曲线
A.相同的焦距B.相同的离心率C.相同的焦点D.相同的准线

题型:不详难度:| 查看答案
已知椭圆C的中心在原点,左焦点为F1,其右焦点F2和右准线分别是抛物线的顶点和准线.
⑴求椭圆C的方程;
⑵若点P为椭圆上C的点,△PF1F2的内切圆的半径为,求点Px轴的距离;
⑶若点P为椭圆C上的一个动点,当∠F1PF2为钝角时求点P的取值范围.
题型:不详难度:| 查看答案
(本题满分12分)已知点所成的比为2,是平面上一动点,且满足.(1)求点的轨迹对应的方程;(2) 已知点在曲线上,过点作曲线的两条弦,且直线的斜率满足,试推断:动直线有何变化规律,证明你的结论.
题型:不详难度:| 查看答案
(本题满分12分)在直角坐标平面中,△的两个顶点的坐标分别为,平面内两点同时满足下列条件:①=0;②;③(1)求△的顶点的轨迹方程;(2)过点直线与(1)中轨迹交于不同的两点,求△面积的最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.