已知抛物线y2=2px(p>0)的焦点为F,直线L:2px+3y=p2-。⑴当p为何值时,焦点F到直线L的距离最大;⑵在第⑴题下,又若抛物线与直线L相交于

已知抛物线y2=2px(p>0)的焦点为F,直线L:2px+3y=p2-。⑴当p为何值时,焦点F到直线L的距离最大;⑵在第⑴题下,又若抛物线与直线L相交于

题型:不详难度:来源:
已知抛物线y2=2px(p>0)的焦点为F,直线L:2px+3y=p2
⑴当p为何值时,焦点F到直线L的距离最大;
⑵在第⑴题下,又若抛物线与直线L相交于A、B两点。求△ABF的面积。
答案
     ⑵
解析





举一反三
(本题满分12分)设A(xy)、B(xy) 是椭圆(a >  b > 0) 上的两点, = (),且满足· = 0,椭圆的离心率e = ,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.
题型:不详难度:| 查看答案
如图,已知圆Ox2+y2=2交x轴于AB两点,点P(-1,1)为圆O上一点.曲线C是以AB为长轴,离心率为的椭圆,点F为其右焦点.

过原点O作直线PF的垂线交椭圆C的右准线l于点Q
(1)求椭圆C的标准方程;(2)证明:直线PQ与圆O相切.
题型:不详难度:| 查看答案

(12分)已知圆
(1)直线A、B两点,若的方程;
(2)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量,求动点Q的轨迹方程,并说明此轨迹是什么曲线。
题型:不详难度:| 查看答案
已知抛物线和双曲线都经过点,它们在轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是                .
题型:不详难度:| 查看答案
已知椭圆方程,过B(-1,0)的直线l交随圆于C、D两点,交直线x=-4于E点,B、E分的比分λ1、λ2.求证:λ1+λ2=0
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.