已知双曲线C的渐近线为y=±3x且过点M(1,2).(1)求双曲线C的方程;(2)若直线y=ax+1与双曲线C相交于A,B两点,O为坐标原点,若OA与OB垂直,

已知双曲线C的渐近线为y=±3x且过点M(1,2).(1)求双曲线C的方程;(2)若直线y=ax+1与双曲线C相交于A,B两点,O为坐标原点,若OA与OB垂直,

题型:不详难度:来源:
已知双曲线C的渐近线为y=±


3
x
且过点M(1,


2
).
(1)求双曲线C的方程;
(2)若直线y=ax+1与双曲线C相交于A,B两点,O为坐标原点,若OA与OB垂直,求a的值.
答案
(1)由题意可知:双曲线的焦点在x轴上,可设方程为
x2
a2
-
y2
b2
=1






b
a
=


3
1
a2
-
2
b2
=1
,解得





a2=
1
3
b2=1

∴双曲线C的方程为3x2-y2=1.
(2)设A(x1,y1),B(x2,y2),联立





y=ax+1
3x2-y2=1
,化为(3-a2)x2-2ax-2=0,(3-a2≠0).
∵直线y=ax+1与双曲线C相交于A,B两点,∴△=4a2+8(3-a2)>0,化为a2<6.
x1+x2=
2a
3-a2
x1x2=
-2
3-a2
.(*)


OA


OB
,∴


OA


OB
=0

∴x1x2+y1y2=0,又y1=ax1+1,y2=ax2+1,
∴(1+a2)x1x2+a(x1+x2)+1=0,
把(*)代入上式得
-2(1+a2)
3-a2
+
2a2
3-a2
+1=0

化为a2=1.满足△>0.
∴a=±1.
举一反三
如图,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.
题型:不详难度:| 查看答案
如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF,BF分别与抛物线交于点M,N.
(Ⅰ)求y1y2的值;
(Ⅱ)记直线MN的斜率为k1,直线AB的斜率为k2.证明:
k1
k2
为定值.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),且离心率为


3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点N(


2
,0)且斜率为


6
3
的直线l与椭圆C交于A,B两点,求证:


OA


OB
=0.
题型:不详难度:| 查看答案
如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
题型:不详难度:| 查看答案
设抛物线y2=2px(p为常数)的准线与X轴交于点K,过K的直线l与抛物线交于A、B两点,则


OA


OB
=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.