过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )A.相交B.相切C.相离D.与p的取值相关

过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )A.相交B.相切C.相离D.与p的取值相关

题型:不详难度:来源:
过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )
A.相交B.相切
C.相离D.与p的取值相关
答案
取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,如图所示:
由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,
在直角梯形APQB中,|MN|=
1
2
(|AP|+|BQ|)=
1
2
(|AF|+|BF|)=
1
2
|AB|,
故圆心M到准线的距离等于半径,
∴以AB为直径的圆与抛物线的准线相切,
故选B.
举一反三
已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且


QP


QF
=


FP


FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有


FA


FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知双曲线的两条渐近线方程是y=x和y=-x,且过点D(


2


3
)
.l1,l2是过点P(-


2
,0)
的两条互相垂直的直线,且l1,l2与双曲线各有两个交点,分别为A1,B1和A2,B2
(1)求双曲线的方程;
(2)求l1斜率的范围
(3)若|A1B1|=


5
|A2B2|
,求l1的方程.
题型:不详难度:| 查看答案
如图,从椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且ABOP,|F1A|=


10
+


5

(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点C,D,且


OC


OD
?若存在,写出该圆的方程,并求|CD|的取值范围;若不存在,说明理由.
题型:不详难度:| 查看答案
已知抛物线y=x2上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为______.
题型:不详难度:| 查看答案
如图,A、B分别是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的上、下两顶点,P是双曲线
y2
a2
-
x2
b2
=1
上在第一象限内的一点,直线PA、PB分别交椭圆于C、D点,如果D恰是PB的中点.
(1)求证:无论常数a、b如何,直线CD的斜率恒为定值;
(2)求双曲线的离心率,使CD通过椭圆的上焦点.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.