已知椭圆x24+y23=1,过椭圆的右焦点F的直线l与椭圆交于点A、B,定直线x=4交x轴于点K,直线KA和直线KB的斜率分别是k1、k2.(1)若直线l的倾斜

已知椭圆x24+y23=1,过椭圆的右焦点F的直线l与椭圆交于点A、B,定直线x=4交x轴于点K,直线KA和直线KB的斜率分别是k1、k2.(1)若直线l的倾斜

题型:不详难度:来源:
已知椭圆
x2
4
+
y2
3
=1
,过椭圆的右焦点F的直线l与椭圆交于点A、B,定直线x=4交x轴于点K,直线KA和直线KB的斜率分别是k1、k2
(1)若直线l的倾斜角是45°,求线段AB的长;
(2)求证:k1+k2=0.
答案
(1)直线l的方程是y=x-1,代入椭圆方程整理得:7x2-8x-8=0
设A(x1,y1),B(x2,y2),则x1+x2=
8
7
,x1x2=-
8
7
.…2分
|AB|=


1+k2
•|x1-x2|=


2


(
8
7
)2+
32
7
=
24
7
.…5分
(2)证明:当l⊥x轴时,由椭圆的对称性易知k1+k2=0;…6分
当l不与x轴垂直时,设其方程是:y=k(x-1)代入椭圆方程整理得:(3+4k2)x2-8k2x+4k2-12=0,易知其判别式△>0恒成立,
设A(x1,y1),B(x2,y2),则x1+x2=
8k2
3+4k2
,x1x2=
4k2-12
3+4k2
.…9分
而K(4,0)
则k1+k2=
y1
x1-4
+
y2
x2-4
=
x1y2+y1x2-4(y1+y2)
(x1-4)(x2-4)
=
k[2x1xx-5(x1+x2)+8]
(x1-4)(x2-4)
=0
即k1+k2=0
综上总有k1+k2=0.…13分
举一反三
已知抛物线y2=8x与椭圆
x2
a2
+
y2
b2
=1有公共焦点F,且椭圆过点D(-


2


3
).
(1)求椭圆方程;
(2)点A、B是椭圆的上下顶点,点C为右顶点,记过点A、B、C的圆为⊙M,过点D作⊙M的切线l,求直线l的方程;
(3)过点A作互相垂直的两条直线分别交椭圆于点P、Q,则直线PQ是否经过定点,若是,求出该点坐标,若不经过,说明理由.
题型:不详难度:| 查看答案
已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2分别为椭圆的左、右焦点,直线PF2的斜率为-4


3
,则△PF1F2的面积为(  )
A.32


3
B.24


3
C.32


2
D.24


2
题型:不详难度:| 查看答案
已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为______.
题型:不详难度:| 查看答案
如图,椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


3
2
,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
|PQ|
|ST|
的最大值及取得最大值时m的值.
题型:不详难度:| 查看答案
已知抛物线C:y2=8x,O为坐标原点,动直线l:y=k(x+2)与抛物线C交于不同两点A,B
(1)求证:


OA


OB
为常数;
(2)求满足


OM
=


OA
+


OB
的点M的轨迹方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.