已知椭圆E:x2a2+y2b2=1(a>b>0)的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.(Ⅰ)求椭圆E的方程;(Ⅱ)

已知椭圆E:x2a2+y2b2=1(a>b>0)的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.(Ⅰ)求椭圆E的方程;(Ⅱ)

题型:不详难度:来源:
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.
答案
(Ⅰ)由题设知:2a=4,即a=2,∴c2=1,b2=3
故椭圆方程为
x2
4
+
y2
3
=1
,…(3分)
(Ⅱ)由已知得直线CD方程为y=x-1,将直线方程带入椭圆方程得:7x2-8x-8=0…(4分)
设点C(x1y1),D(x2y2),x1+x2=
8
7
x1x2=-
8
7
…(5分)
|CD|=


1+12


(x1+x2)2-4x1x2
=


2


(
8
7
)
2
+4•
8
7
…(7分)
点F1到直线CD的距离是d=
|-1-1|


2
=


2
…(8分)
所以S△CDF1=
1
2
|CD|d=
12
7


2
…(9分)
(Ⅲ)A(-2,0),B(2,0).
设M(x0,y0),则-2<x0<2
因为点M在椭圆上,所以
y20
=
3
4
(4-
x20
)
…(10分)
因为P、A、M三点共线,所以kPA=kMA
t
6
=
y0
x0+2
⇒t=
6y0
x0+2
…(11分)
所以


BM
=(x0-2,y0),


BP
=(2,
6y0
x0+2
)

所以


BM


BP
=
5
2
(2-x0)>0…(13分)
所以∠MBP为锐角…(14分)
举一反三
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦点分别为F1、F2,过F1作直线交椭圆于P、Q两点,△F2PQ的周长为4


3

(1)若椭圆的离心率e=


3
3
,求椭圆的方程;
(2)若M为椭圆上一点,


MF1


MF2
=1,求△MF1F2的面积最大时的椭圆方程.
题型:不详难度:| 查看答案
在直角坐标系中,O为坐标原点,如果一个椭圆经过点P(3,


2
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
题型:不详难度:| 查看答案
如图,直线l:y=x+b与抛物线x2=4y相切于点A.
(1)求实数b的值;
(2)若过抛物线的焦点且平行于直线l的直线l1交抛物线于B,C两点,求△ABC的面积.
题型:不详难度:| 查看答案
如图,将圆p:x2+y2=4上任意一点P′的纵坐标变为原来的一半(横坐标不变),得到点P,并设点P的轨迹为曲线C.
(1)求C的方程;
(2)设o为坐标原点,过点Q(


3
,0)的直线l与曲线C交于两点A,B,线段AB的中点为N,且


OE
=2


ON
,点E在曲线C上,求直线l:
x
a
+
y
b
=1
的方程.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|


F1Q
|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足


PT


TF2
=0
,|


TF2
|≠0.
(1)求证:|PQ|=|PF2|;
(2)求点T的轨迹C的方程;
(3)若椭圆的离心率e=


3
2
,试判断轨迹C上是否存在点M,使△F1MF2的面积S=b2,若存在,请求出∠F1MF2的正切值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.