已知双曲线的中心在原点,左右焦点分别为F1,F2,离心率为2,且过点(4,-10),(1)求此双曲线的标准方程;(2)若直线系kx-y-3k+m=0(其中k为参

已知双曲线的中心在原点,左右焦点分别为F1,F2,离心率为2,且过点(4,-10),(1)求此双曲线的标准方程;(2)若直线系kx-y-3k+m=0(其中k为参

题型:不详难度:来源:
已知双曲线的中心在原点,左右焦点分别为F1,F2,离心率为


2
,且过点(4,-


10
)

(1)求此双曲线的标准方程;
(2)若直线系kx-y-3k+m=0(其中k为参数)所过的定点M恰在双曲线上,求证:F1M⊥F2M.
答案
(1)∵e=


2
,∴
c
a
=


2
,∴c2=2a2=a2+b2,∴a=b,
∴设双曲线方程为x2-y2=a2(a>0),∵双曲线经过(4,-


10
)
,∴16-10=a2即a2=6,
∴所求双曲线方程为
x2
6
-
y2
6
=1
.----------(4分)
(2)∵直线系方程可化为k(x-3)-y+m=0
∴直线系过定点M(3,m).------------(5分)
∵M(3,m)在双曲线上,∴9-m2=6,,∴m2=3
又双曲线焦点坐标为F1(-2


3
,0)
F2(2


3
,0)

kF1M=
m
3+2


3
kF2M=
m
3-2


3
-----------(7分)
kF1MkF2M=
m2
(3+2


3
)(3-2


3
)
=-1
∴F1M⊥F2M----------(10分)
举一反三
如图,线段MN的两个端点M、N分别在x轴、y轴上滑动,|MN|=5,点P是线段MN上一点,且


MP
=
2
3


PN
,点P随线段MN的运动而变化.
(1)求点P的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设


OS
=


OA
+


OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
题型:不详难度:| 查看答案
如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)
到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.
题型:不详难度:| 查看答案
已知抛物线C的方程为x2=2py(p>0),焦点F为(0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.
题型:不详难度:| 查看答案
如图,椭圆
x2
a2
+
y2
b
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=


3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.
题型:不详难度:| 查看答案
若直线y=kx+2与曲线y=







x2-1
,|x|>1


1-x2
,|x|≤1
恰有两个不同的交点,则k∈______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.