在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为32.(1)求抛物线C的方程;(2)过F

在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为32.(1)求抛物线C的方程;(2)过F

题型:不详难度:来源:
在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为
3
2

(1)求抛物线C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△OAB的面积;
(3)已知抛物线上一点M(4,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断:直线DE是否过定点?说明理由.
答案
(1)∵F(
p
2
,0)

圆心Q在线段OF的垂直平分线x=
p
4

又∵准线方程为:x=-
p
2

p
4
-(-
p
2
)=
3
2
,得p=2,
∴抛物线C:y2=4x;
(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=


3
(x-1).





y2=4x
y=


3
(x-1)
得:y2-
4
3


3
y-4=0

y1+y2=
4
3


3
y1y2=-4

S=
1
2
×|OF|×|y2-y1|
=
1
2
×1×


(y1+y2)2-4y1y2
=
1
2


16
3
+16
=
4
3


3

(3)设直线DE:





x=my+t
y2=4x
,可得y2-4my-4t=0,则△=16m2+16t>0(*)
设D(x1,y1),E(x2,y2),则y1+y2=4m,y1y2=-4t,
0=


MD


ME
=(x1-4,y1-4)•(x2-4,y2-4)
=x1x2-4(x1+x2)+16+y1y2-4(y1+y2)+16
=
y12
4
y22
4
-4(
y12
4
+
y22
4
)+16+y1y2-4(y1+y2)+16
=
(y1y2)2
16
-(y1+y2)2+3y1y2-4(y1+y2)+32

=t2-16m2-12t+32-16m,
即t2-12t+32=16m2+16m得:(t-6)2=4(2m+1)2
∴t-6=±2(2m+1)即:t=4m+8或t=-4m+4
代入(*)式检验均满足△>0,
∴直线DE的方程为:x=my+4m+8=m(y+4)+8或:x=m(y-4)+4,
∴直线过定点(8,-4).(定点(4,4)不满足题意,故舍去)
举一反三
已知点A(1,0),抛物线x2=4y的焦点为F,射线FA与抛物线相交点M,与其准线交于N,则|FM|:|MN|=______.
题型:不详难度:| 查看答案
已知抛物线C的方程为:y2=4x,直线l过(-2,1)且斜率为k≥0,当k为何值时,直线l与抛物线C(1)只有一个公共点,(2)有两个公共点.
题型:不详难度:| 查看答案
已知点P在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6-|PF2|,且椭圆C的离心率为


5
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得


GM


GN
为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
已知圆C1x2+y2=
4
5
,直线l:y=x+m(m>0)与圆C1相切,且交椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1两点,c是椭圆C2的半焦距,c=


3
b

(1)求m的值;
(2)O为坐标原点,若


OA1


OB1
,求椭圆C2的方程;
(3)在(2)的条件下,设椭圆C2的左、右顶点分别为A,B,动点S(x1,y1)∈C2(y1>0)直线AS,BS与直线x=
34
15
分别交于M,N两点,求线段MN的长度的最小值.
题型:不详难度:| 查看答案
抛物线y2=4x上一定点P(x0,2),直线l的一个方向向量


d
=(1,-1)

(1)若直线l过P,求直线l的方程;
(2)若直线l不过P,且直线l与抛物线交于A,B两点,设直线PA,PB的斜率为kPA,kPB,求kPA+kPB的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.