直线y=kx+1(k∈R)与椭圆x25+y2m=1恒有公共点,则m的取值范围是(  )A.[1,5)∪(5,+∞)B.(0,5)C.[1,+∞)D.(1,5)

直线y=kx+1(k∈R)与椭圆x25+y2m=1恒有公共点,则m的取值范围是(  )A.[1,5)∪(5,+∞)B.(0,5)C.[1,+∞)D.(1,5)

题型:不详难度:来源:
直线y=kx+1(k∈R)与椭圆
x2
5
+
y2
m
=1
恒有公共点,则m的取值范围是(  )
A.[1,5)∪(5,+∞)B.(0,5)C.[1,+∞)D.(1,5)
答案
联立





y=kx+1
x2
5
+
y2
m
=1
,消去y得到(m+5k2)x2+10kx+5-5m=0,(m>0,m≠5)
∵直线y=kx+1(k∈R)与椭圆
x2
5
+
y2
m
=1
恒有公共点,
∴△≥0,即100k2-20(1-m)(m+5k2)≥0,化为m2+5mk2-m≥0,
∵m>0,∴m≥-5k2+1,
∵-5k2+1≤1,∴m≥1(m≠5).
故选A.
举一反三
已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
,其短轴的一个端点到右焦点的距离为2,且点A(


2
,1)在椭圆M上.直线l的斜率为


2
2
,且与椭圆M交于B、C两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求△ABC面积的最大值.
题型:昌平区一模难度:| 查看答案
已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为


2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.
题型:不详难度:| 查看答案
过原点且倾斜角为30°的直线被圆x2+y2-4x=0所截得的弦长为(  )
A.


3
B.2C.


6
D.2


3
题型:不详难度:| 查看答案
已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.
题型:不详难度:| 查看答案
已知抛物线C:y=x2+4x+
7
2
,过抛物线C上点M且与M处的切线垂直的直线称为抛物线C在点M的法线.
(1)若抛物线C在点M的法线的斜率为-
1
2
,求点M的坐标(x0,y0);
(2)设P(-2,4)为C对称轴上的一点,在C上一定存在点,使得C在该点的法线通过点P.试求出这些点,以及C在这些点的法线方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.