已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-3,0),右顶点为D(2,0),设点A(1,12).(Ⅰ)求该椭圆的标准方程;(II)过原

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-3,0),右顶点为D(2,0),设点A(1,12).(Ⅰ)求该椭圆的标准方程;(II)过原

题型:不详难度:来源:
已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-


3
,0)
,右顶点为D(2,0),设点A(1,
1
2
)
.(Ⅰ)求该椭圆的标准方程;(II)过原点O且斜率为k(k<0)的直线l交椭圆于点B,C,求△ABC面积的最大值及此时直线l的方程.
答案
(Ⅰ)由已知得椭圆的半长轴a=2,半焦距c=


3
,则半短轴b=1.
又椭圆的焦点在x轴上,
∴椭圆的标准方程为
x2
4
+y2=1

 (II)设该直线方程为y=kx,代入
x2
4
+y2=1

解得B(
2


4k2+1
2k


4k2+1
),C( -
2


4k2+1
,-
2k


4k2+1
),
|BC|=4


1+k2


1+4k2
,又点A到直线BC的距离d=
|k-
1
2
|


1+k2

∴△ABC的面积S△ABC=
1
2
|AB|•d=
|2k-1|


1+4k2

于是S△ABC=


4k2-4k+1
4k2+1
=


1-
4k
4k2+1

4k
4k2+1
≥-1,得S△ABC


2
,其中,当k=-
1
2
时,等号成立.
∴S△ABC的最大值是


2
.直线方程为y=-
1
2
x
举一反三
以椭圆
x2
9
+
y2
25
=1
长轴两个端点为焦点,准线过椭圆焦点的双曲线的渐近线的斜率是______.
题型:不详难度:| 查看答案
设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过N点作直线l交椭圆于A、B两点.
(1)求椭圆的方程;
(2)若以AB为直径的圆过点F1,试求直线l的方程.
题型:不详难度:| 查看答案
附加题:
设A、B是抛物线C:y2=2px(P>0)上异于原点O的两个不同点,直线OA和OB的倾斜角分别为α和β,当α,β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该定点的坐标.
(注:实验班必做,普通班选做)
题型:不详难度:| 查看答案
双曲线的离心率等于


5
2
,且与椭圆
x2
9
+
y2
4
=1有公共焦点,求此双曲线的方程.
题型:不详难度:| 查看答案
已知F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,已知点N(-
a2
c
,0)
,满足


F1F2
=2


NF1
且|


F1F2
|=2
,设A、B是上半椭圆上满足


NA


NB
的两点,其中λ∈[
1
5
1
3
]

(1)求此椭圆的方程;
(2)求直线AB的斜率的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.