在极坐标系中,曲线ρ=3截直线ρcos(θ+π4)=1所得的弦长为______.

在极坐标系中,曲线ρ=3截直线ρcos(θ+π4)=1所得的弦长为______.

题型:不详难度:来源:
在极坐标系中,曲线ρ=3截直线ρcos(θ+
π
4
)=1
所得的弦长为______.
答案
由曲线的参数方程ρ=3,化为普通方程为x2+y2=9,
其圆心是O(0,0),半径为3.
ρcos(θ+
π
4
)=1
得:ρcosθ-ρsinθ=


2

化为直角坐标方程为x-y-


2
=0,
由点到直线的距离公式,得弦心距d=
|-


2
|


2
=1

故l被曲线C所截得的弦长为2


R2-d2
=2


9-1
=4


2

故答案为4


2
举一反三
已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a的值为______.
题型:不详难度:| 查看答案
双曲线C与椭圆
x2
36
+
y2
16
=1
 有相同的焦点,且C的渐近线为x±


3
y=0
,则双曲线C的方程是______.
题型:不详难度:| 查看答案
x2
9
+
y2
4
=1
 上的点与直线2x-y+10=0的最大距离是______.
题型:不详难度:| 查看答案
记平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于常数m(其中m<0)的动点B的轨迹,加上A1,A2两点所构成的曲线为C
(I)求曲线C的方程,并讨论C的形状与m的值的关系;
(Ⅱ)当m=-
3
4
时,过点F(1,0)且斜率为k(k#0)的直线l1交曲线C于M.N两点,若弦MN的中点为P,过点P作直线l2交x轴于点Q,且满足


MN


PQ
=0
.试求
|


PQ
|
|


MN
|
的取值范围.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知F1(-4,0),直线l:x=-2,动点M到F1的距离是它到定直线l距离的


2
倍.设动点M的轨迹曲线为E.
(1)求曲线E的轨迹方程.
(2)设点F2(4,0),若直线m为曲线E的任意一条切线,且点F1、F2到m的距离分别为d1,d2,试判断d1d2是否为常数,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.