过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,则|AB|=______.
题型:不详难度:来源:
过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,则|AB|=______. |
答案
由题意,p=2,故抛物线的准线方程是x=-1, ∵抛物线 y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点 ∴|AB|=x1+x2+2, 又x1+x2=6 ∴∴|AB|=x1+x2+2=8 故答案为8. |
举一反三
已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A、B两点.求:线段AB的中点坐标. |
设直线y=a分别与曲线y2=x和y=ex交于点M、N,则当线段MN取得最小值时a的值为______. |
已知4x2+5y2=1,则2x+y的最大值是( ) |
给定椭圆C:+=1(a>b>0),称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”. 若椭圆C的一个焦点为F2(,0),其短轴上的一个端点到F2距离为. (1)求椭圆C及其“伴随圆”的方程; (2)若过点P(0,m)(m<0)的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为2,求m的值; (3)过椭圆C的“伴椭圆”上一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,当直线l1,l2都有斜率时,试判断直线l1,l2的斜率之积是否为定值,并说明理由. |
一束光线从点F1(-1,0)出发,经直线l:2x-y+3=0上一点P反射后,恰好穿过点F2(1,0). (Ⅰ)求点F1关于直线l的对称点F1′的坐标; (Ⅱ)求以F1、F2为焦点且过点P的椭圆C的方程; (Ⅲ)设直线l与椭圆C的两条准线分别交于A、B两点,点Q为线段AB上的动点,求点Q 到F2的距离与到椭圆C右准线的距离之比的最小值,并求取得最小值时点Q的坐标. |
最新试题
热门考点