要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.

要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆x27+y2a=1总有公共点,实数a的取值范围是______.

题型:不详难度:来源:
要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆
x2
7
+
y2
a
=1总有公共点,实数a的取值范围是______.
答案
要使方程
x2
7
+
y2
a
=1表示焦点在x轴上的椭圆,需a<7,
由直线y=kx+1(k∈R)恒过定点(0,1),
所以要使直线y=kx+1(k∈R)与椭圆
x2
7
+
y2
a
=1总有公共点,
则(0,1)应在椭圆上或其内部,即a>1,
所以实数a的取值范围是[1,7).
故答案为[1,7).
举一反三
设直线y=kx与椭圆
x2
4
+
y2
3
=1
相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于(  )
A.±
3
2
B.±
2
3
C.±
1
2
D.±2
题型:不详难度:| 查看答案
若F1、F2是椭圆
x2
4
+y2=1
的左、右两个焦点,M是椭圆上的动点,则
1
|MF1|
+
1
|MF2|
的最小值为______.
题型:普陀区一模难度:| 查看答案
已知点P(3,m)在以点F为焦点的抛物线





x=4t2
y=4t
(t为参数)上,则|PF|的长为______.
题型:江门一模难度:| 查看答案
教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.
题型:上海难度:| 查看答案
一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.