如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:时间(分钟)1020203030404050506

如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:时间(分钟)1020203030404050506

题型:不详难度:来源:
如图,A地到火车站共有两条路径,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:

时间(分钟)
1020
2030
3040
4050
5060
的频率





的频率
0




 
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .
答案
(1)甲应选择路径;乙应选择路径
(2)X的分布列为

0
1
2
P
0.04
0.42
0.54

解析
(1)会用频率估计概率,然后把问题转化为互斥事件的概率;(2)首先确定X的取值,然后确定有关概率,注意运用对立事件、相互独立事件的概率公式进行计算,列出分布列后即可计算数学期望.
(1)表示事件“甲选择路径时,40分钟内赶到火车站”, 表示事件“甲选择路径时,50分钟内赶到火车站”,
用频率估计相应的概率,则有:

,∴甲应选择路径

,∴乙应选择路径
(2)用A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知,又事件A,B相互独立,的取值是0,1,2,


∴X的分布列为

0
1
2
P
0.04
0.42
0.54

举一反三
小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X。若X=0就参加学校合唱团,否则就参加学校排球队。

(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.
题型:不详难度:| 查看答案
(2013•天津)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(1)求取出的4张卡片中,含有编号为3的卡片的概率.
(2)再取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.
题型:不详难度:| 查看答案
小波以游戏方式决定是去打球、唱歌还是去下棋。游戏规则为:以O为起点,再从(如图)这六个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为,若就去打球,若就去唱歌,若就去下棋。
(1)写出数量积的所有可能值;
(2)分别求小波去下棋的概率和不去唱歌的概率。

题型:不详难度:| 查看答案
把半圆弧分成4等份,以这些分点(包括直径的两端点)为顶点,作出三角形,从这些三角形中任取3个不同的三角形,则这3个不同的三角形中钝角三角形的个数X的期望为 (   )
A.B.2C.3D.

题型:不详难度:| 查看答案
从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数, 则这个数不能被 3整除的概率为 (   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.