有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为(  )A.B.C.D.

有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为(  )A.B.C.D.

题型:不详难度:来源:
有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为(  )
A.B.C.D.

答案
B
解析

试题分析:三人上10节车厢的情况种数是10×10×10=1000,
三人在不同的车厢的情况种数是:=10×9×8,
∴至少两人上了同一车厢的概率=.
点评:本题考查的是等可能事件的概率的求法,所求的事件的概率等于用1减去它的对立事件概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,属于基础题.
举一反三
甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(  )
A.B.C.D.

题型:不详难度:| 查看答案
某厂生产的灯泡能用3000小时的概率为0.8,能用4500小时的概率为0.2,则已用3000小时的灯泡能用到4500小时的概率为         .
题型:不详难度:| 查看答案
在某校组织的一次篮球定点投篮测试中,规定每人最多投次,每次投篮的结果相互独立.在处每投进一球得分,在处每投进一球得分,否则得分. 将学生得分逐次累加并用表示,如果的值不低于分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在处投一球,以后都在处投;方案2:都在处投篮.甲同学在处投篮的命中率为,在处投篮的命中率为.
(Ⅰ)甲同学选择方案1.
求甲同学测试结束后所得总分等于4的概率;
求甲同学测试结束后所得总分的分布列和数学期望
(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
题型:不详难度:| 查看答案
已知某次月考的数学考试成绩,统计结果显示,则(    )
A.B.C.D.

题型:不详难度:| 查看答案
某种家用电器每台的销售利润与该电器的无故障时间(单位:年)有关,若,则销售利润为0元;若,则销售利润为100元,若,则销售利润为200元.设每台该种电器的无故障使用时间这三种情况发生的概率分别为,又知为方程的两根,且.
(1)求的值;
(2)记表示销售两台这种家用电器的销售利润总和,求的分布列及数学期望.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.