从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( )A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰
题型:不详难度:来源:
从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( )A.至少有一个黑球与都是黑球 | B.至少有一个黑球与至少有一个红球 | C.恰好有一个黑球与恰好有两个黑球 | D.至少有一个黑球与都是红球 |
|
答案
对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,∴A不正确 对于B:事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球一个黑球,∴B不正确 对于C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴C正确 对于D:事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生, ∴这两个事件是对立事件,∴D不正确 故选C |
举一反三
盒中装有7个零件,其中2个是使用过的,另外5个未经使用. (Ⅰ)从盒中每次随机抽取1个零件,每次观察后都将零件放回盒中,求3次抽取中恰有1次抽到使用过的零件的概率; (Ⅱ)(理)从盒中随机抽取2个零件,使用后放回盒中,记此时盒中使用过的零件个数为X,求X的分布列和数学期望. (Ⅱ)(文)从盒中随机抽取2个零件,使用后放回盒中,求此时盒中使用过的零件个数为3或4概率. |
某校高中篮球兴趣爱好者90人来进行投篮测试,现假定每人投6次,每次投中的概率均为,且每次投篮的结果都是相互独立的. (1)求学生甲在次投篮中投中3次的概率; (2)若某一学生在次投篮中至少投中5次就被认定为“优秀”,那么试估计这些篮球兴趣爱好者被认定为“优秀”的人数. |
在某项测量结果ξ服从正态分布N(1,σ2),(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为______. |
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为.现已赛完两局,乙暂时以2:0领先. (1)求甲获得这次比赛胜利的概率; (2)设比赛结束时比赛的总局数为随机变量ξ,求随机变量ξ的分布列和数学期望E(ξ). |
一射击运动员对同一目标独立地射击四次,若此射击运动员每次射击命中的概率为,则至少命中一次的概率为______. |
最新试题
热门考点