已知袋子里有红球3个,蓝球2个,黄球1个,其大小和重量都相同但可区分.从中任取一球确定颜色后再放回,取到红球后就结束选取,最多可以取三次.(1)求在三次选取中恰

已知袋子里有红球3个,蓝球2个,黄球1个,其大小和重量都相同但可区分.从中任取一球确定颜色后再放回,取到红球后就结束选取,最多可以取三次.(1)求在三次选取中恰

题型:不详难度:来源:
已知袋子里有红球3个,蓝球2个,黄球1个,其大小和重量都相同但可区分.从中任取一球确定颜色后再放回,取到红球后就结束选取,最多可以取三次.
(1)求在三次选取中恰有两次取到蓝球的概率;
(2)求取球次数的分布列、数学期望及方差.
答案
(1)从6个球中有放回地取3个球,共有63种取法.其中三次中恰好两次取到蓝球的取法为C31C21C21+3C21C21.故三次选取恰有两次取到蓝球的概率为P=
C13
C12
C12
+3
C12
C12
63
=
1
9

(2)设取球次数为ξ,则ξ的分布列为
举一反三
题型:湖南难度:| 查看答案
题型:不详难度:| 查看答案
题型:山东难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

ξ123
P
1
2
1
4
1
4
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是
1
2
,且面试是否合格互不影响.求:
(Ⅰ)至少有1人面试合格的概率;
(Ⅱ)签约人数ξ的分布列和数学期望.
设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.
(1)当p=q=
1
2
时,求数学期望E(ξ)及方差V(ξ);
(2)当p+q=1时,将ξ的数学期望E(ξ)用p表示.
甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为
8
3
,乙队中3人答对的概率分别为
8
3
8
3
1
8
,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
一箱产品中有正品4件,次品3件,从中任取2件,其中事件:
①恰有1件次品和恰有2件次品;
②至少有1件次品和全是次品;
③至少有1件正品和至少有1件次品;
④至少有1件次品和全是正品.
是互斥事件的组数有(  )
A.1组B.2组C.3组D.4组
甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则P(ξ=k)等于(  )
A.0.6k-1×0.4B.0.24k-1×0.4
C.0.4k-1×0.6D.0.6k-1×0.24