三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是______(结果用最简分数表示).
题型:上海难度:来源:
三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是______(结果用最简分数表示). |
答案
每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球 三个同学共有3×3×3=27种 有且仅有两人选择的项目完全相同有××=18种 其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择 故有且仅有两人选择的项目完全相同的概率是= 故答案为: |
举一反三
袋中有6个小球,分别标有数字1,2,3,4,5,6,甲乙两人玩游戏,先由甲从袋中任意摸出一个小球,记下号码a后放回袋中,再由乙摸出一个小球,记下号码b,若|a-b|≤1,就称甲乙两人“有默契”,则甲乙两人“有默契”的概率为( ) |
从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为______. |
已知集合A={x|x2-7x+6≤0,x∈N*},集合B={x 题型:x-3|≤3,x∈N*},集合M={(x,y)|x∈A,y∈B} (1)求从集合M中任取一个元素是(3,5)的概率; (2)从集合M中任取一个元素,求x+y≥10的概率; |
难度:|
查看答案 在(x+1)6的二项展开式中任取2项,若用随机变量ξ表示取出的2项中系数为奇数的项的个数,则随机变量ξ的数学期望Eξ=______. |
先后2次抛掷一枚骰子,将得到的点数分别记为a,b. (Ⅰ)设函数f(x)=|x-a|,函数g(x)=x-b,令F(x)=f(x)-g(x),求函数F(x)有且只有一个零点的概率; (Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率. |