已知三个正数a,b,c满足a<b<c.(1)若a,b,c是从{110,210,…910}中任取的三个数,求a,b,c能构成三角形三边长的概率;(2)若a,b,c

已知三个正数a,b,c满足a<b<c.(1)若a,b,c是从{110,210,…910}中任取的三个数,求a,b,c能构成三角形三边长的概率;(2)若a,b,c

题型:不详难度:来源:
已知三个正数a,b,c满足a<b<c.
(1)若a,b,c是从{
1
10
2
10
,…
9
10
}
中任取的三个数,求a,b,c能构成三角形三边长的概率;
(2)若a,b,c是从(0,1)中任取的三个数,求a,b,c能构成三角形三边长的概率.
答案

魔方格
(1)若a,b,c能构成三角形,则a+b>c,c≥
4
10

①若c=
4
10
时,b=
3
10
,a=
2
10
.共1种;
②若c=
5
10
时.b=
4
10
,a=
3
10
2
10
.共2种;
同理c=
6
10
时,有3+1=4种;c=
7
10
时,有4+2=6种;c=
8
10
时,有5+3+1=9种;c=
9
10
时,有6+4+2=12种.
于是共有1+2+4+6+9+12=34种.
下面求从{
1
10
2
10
,…
9
10
}
中任取的三个数a,b,c(a<b<c)的种数:
①若a=
1
10
b=
2
10
,则c=
3
10
,…,
9
10
,有7种;b=
3
10
,c=
4
10
,…,
9
10
,有6种;b=
4
10
c=
5
10
,…,
9
10
,有5种;…; b=
8
10
,c=
9
10
,有1种.
故共有7+6+5+4+3+2+1=28种.
同理,a=
2
10
时,有6+5+4+3+2+1=21种;a=
3
10
时,有5+4+3+2+1=15种;a=
4
10
时,有4+3+2+1=10种;a=
5
10
时,有3+2+1=6种;a=
6
10
时,有2+1=3种;a=
7
10
时,有1种.这时共有28+21+15+10+6+3+1=84种.
∴a,b,c能构成三角形的概率为
34
84
=
17
42

(2)a,b,c能构成三角形的充要条件是





0<a<b<c<1
a+b>c
0<c<1

在坐标系aOb内画出满足以上条件的区域(如右图阴影部分),
由几何概型的计算方法可知,只求阴影部分的面积与图中正方形的面积比即可.
又S阴影=
1
2
,于是所要求的概率为P=
1
2
1
=
1
2
举一反三
先后抛掷2枚质地均匀的骰子,得到的点数分别记为x,y,则点(x,y)落在直线x=
4
3
x=
8
3
之间的概率为(  )
A.
1
36
B.
1
6
C.
2
9
D.
4
15
题型:不详难度:| 查看答案
从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是______.
题型:不详难度:| 查看答案
从甲、乙、丙、丁4人中选3人当代表,则甲被选中的概率是(  )
A.
1
4
B.
1
2
C.
1
3
D.
3
4
题型:不详难度:| 查看答案
一箱内有十张标有0到9的卡片,从中任选一张,则取到卡片上的数字不小于6的概率是(  )
A.
1
3
B.
3
5
C.
2
5
D.
1
4
题型:不详难度:| 查看答案
盒中有10个大小、形状完全相同的小球,其中8个白球、2个红球,则从中任取2球,至少有1个白球的概率是(  )
A.
44
45
B.
1
5
C.
1
45
D.
89
90
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.