有一个翻硬币游戏,开始时硬币正面朝上,然后掷骰子根据下列①、②、③的规则翻动硬币:①骰子出现1点时,不翻动硬币;②出现2,3,4,5点时,翻动一下硬币,使另一面朝上;③出现6点时,如果硬币正面朝上,则不翻动硬币;否则,翻动硬币,使正面朝上。按以上规则,在骰子掷了n次后,硬币仍然正面朝上的概率记为Pn。 (1)求证:n∈N*,点(Pn,Pn+1)恒在过定点斜率为-的直线上; (2)求数列{Pn}的通项公式Pn; (3)用记号Sn→m表示数列{Pn-}从第n项到第m项之和,那么对于任意给定的正整数k,求数列S1→k,Sk+1→2k,…S(n-1)k+1→nk的前n项和Tn。 |