某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(

某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(

题型:河南省模拟题难度:来源:
某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人。
(I)试问在抽取的学生中,男、女生各有多少人?
(II)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率
答案
解:(Ⅰ)直方图中,因为身高在170~175cm的男生的频率为0.08×5=0.4,
设男生数为n1,则,得n1=40.
由男生的人数为40,得女生的人数为80﹣40=40.
(Ⅱ)男生身高×170cm的人数=(0.08+0.04+0.02+0.01)×5×40=30,女生身高×170cm的人数为0.02×5×40=4,所以可得到下列列联表:
举一反三
题型:吉林省期中题难度:| 查看答案
题型:高考真题难度:| 查看答案
题型:高考真题难度:| 查看答案
题型:月考题难度:| 查看答案
题型:云南省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。
(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2
表1 :注射药物A 后皮肤疱疹面积的频数分布表

表2 :注射药物B  后皮肤疱疹面积的频数分布表

完成下列2×2联表,并回答能否在犯错率不超过0.01%的前提下认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”

电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
附:


电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。

(1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)。
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程=3﹣5x,变量x增加1个单位时,y平均增加5个单位;
③线性回归方程=x+必过();
④曲线上的点与该点的坐标之间具有相关关系;
⑤有一个2×2列联表中,由计算得K2=13.079,则其两个变量间有关系的可能性是90%.其中错误的个数是
[     ]
A.1
B.2
C.3
D.4
甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:

(Ⅰ)计算x,y的值.


(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率.(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异.参考数据与公式:由列联表中数据计算
临界值表