若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  

若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  

题型:成都模拟难度:来源:
若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  )
A.函数f(x)=
4
x
+x是(1,+∞)
上的1级类增函数
B.函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数
C.若函数f(x)=sinx+ax为[
π
2
,+∞)
上的
π
3
级类增函数,则实数a的最小值为2
D.若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[1,+∞)
答案
∵f(x)=
4
x
+x

∴f(x+1)-f(x)=
4
x+1
+x+1-
4
x
-x

=
4
x+1
-
4
x
+1
≥0在(1,+∞)上不成立,
故A不正确;
∵f(x)=|log2(x-1)|,
∴f(x+1)-f(x)=|log2x|-|log2(x-1)|≥0在(1,+∞)上不成立,
故B不正确;
∵函数f(x)=sinx+ax为[
π
2
,+∞)上的
π
3
级类增函数,
∴sin(x+
π
3
)+a(x+
π
3
)≥sinx+ax,
∴sinxcos
π
3
+cosxsin
π
3
+ax+
π
3
a≥sinx+ax,


3
2
cosx
+
π
3
a
1
2
sinx,
当x=
π
2
时,
π
3
a
1
2
,a≥
3

∴实数a的最小值不为2,故C不正确;
∵f(x)=x2-3x为[1,+∞)上的t级类增函数,
∴(x+t)2-3(x+t)≥x2-3x,
∴2tx+t2-3t≥0,
t≥3-2x∈[1,+∞),
故D成立.
故选D.
举一反三
给定下列四个命题:
①若
1
a
1
b
<0
,则b2>a2
②已知直线l,平面α,β为不重合的两个平面.若l⊥α,且α⊥β,则lβ;
③若-1,a,b,c,-16成等比数列,则b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=-1.
其中为真命题的是______.(写出所有真命题的序号)
题型:崇文区二模难度:| 查看答案
设函数f(x)=|x|x+bx+c,则下列命题中正确命题的序号有______.
(1)函数f(x)在R上有最小值;
(2)当b>0时,函数f(x)在R上是单调增函数;
(3)函数f(x)的图象关于点(0,c)对称;
(4)方程f(x)=0可能有四个不同实数根.
题型:内江一模难度:| 查看答案
下列命题中正确的命题个数为(  )
①存在一个实数x使不等式
x
-3x+6<0
成立;
②已知a,b是实数,若ab=0,则a=0且b=0;
x=2kπ+
π
4
(k∈Z)
是tanx=1的充要条件.
A.0B.1C.2D.3
题型:湖南模拟难度:| 查看答案
已知偶函数f(x)(x∈R),当x∈(-2,0]时,f(x)=-x(2+x),当x∈[2,+∞)时,f(x)=(x-2)(a-x)(a∈R).
关于偶函数f(x)的图象G和直线l:y=m(m∈R)的3个命题如下:
①当a=2,m=0时,直线l与图象G恰有3个公共点;
②当a=3,m=
1
4
时,直线l与图象G恰有6个公共点;
③∀m∈(1,+∞),∃a∈(4,+∞),使得直线l与图象G交于4个点,且相邻点之间的距离相等.
其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③
题型:丰台区二模难度:| 查看答案
下列命题正确的序号为______.
①函数y=ln(3-x)的定义域为(-∞,3];
②定义在[a,b]上的偶函数f(x)=x2+(a+5)x+b最小值为5;
③若命题P:对∀x∈R,都有x2-x+2≥0,则命题¬P:∃x∈R,有x2-x+2<0;
④若a>0,b>0,a+b=4,则
1
a
+
1
b
的最小值为1.
题型:济南一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.