已知命题p:任意x∈R,x2+1≥a,命题q:方程x2a+2-y22=1表示双曲线.(1)若命题p为真命题,求实数a的取值范围;(2)若“p且q”为真命题,求实

已知命题p:任意x∈R,x2+1≥a,命题q:方程x2a+2-y22=1表示双曲线.(1)若命题p为真命题,求实数a的取值范围;(2)若“p且q”为真命题,求实

题型:不详难度:来源:
已知命题p:任意x∈R,x2+1≥a,命题q:方程
x2
a+2
-
y2
2
=1表示双曲线.
(1)若命题p为真命题,求实数a的取值范围;
(2)若“p且q”为真命题,求实数a的取值范围.
答案
解(1)记f(x)=x2+1,x∈R,则f(x)的最小值为1,…(2分)
因为命题p为真命题,所以a≤f(x)min=1,
即a的取值范围为(-∞,1].             …(4分)
(2)因为q为真命题,所以a+2>0,解得a>-2.…(6分)
因为“p且q”为真命题,所以





a≤1
a>-2
即a的取值范围为(-2,1].
…(8分)
说明:第(1)问得出命题p为真命题的等价条件a≤1,给(4分),没过程不扣分,
第(2)问分两步给,得到a>-2给(2分),得到x∈(-2,1]给(2分),少一步扣(2分).
举一反三
已知命题P:函数f(x)=lg(ax2-x+
a
16
)的定义域为R,命题Q:不等式a>
1
x+1
对x∈(0,+∞)均成立,如果“P或 Q”为真命题,“P且Q”为假命题,求实数a的取值范围.
题型:不详难度:| 查看答案
设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是______.
题型:嘉兴二模难度:| 查看答案
给出下列四个命题:
①存在实数α,使sinα•cosα=1;
f(x)=-2cos(
2
-2x)
是奇函数;
x=-
8
是函数y=3sin(2x-
3
4
π)
的图象的一条对称轴;
④函数y=cos(sinx)的值域为[0,cos1].
其中正确命题的序号是 ______.
题型:不详难度:| 查看答案
已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(


2
,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.
题型:不详难度:| 查看答案
在①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量中,不正确的命题是 ______.并对你的判断举例说明 ______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.